金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高三数学课文数列的前N项和教案

来源:学大教育     时间:2015-05-19 19:32:53


在高三数学学习中,我们会重点学习数列这个基础知识。针对数学基础知识的学习,我们学大教育专家为同学们带来了,高三数学课文数列的前N项和教案整理。希望你在学习数学的时候,好好利用我们的总结。

一、课前检测

1.在数列{an}中,an=1n+1+2n+1+…+nn+1,又bn=2an•an+1,求数列{bn}的前n项的和.

解:由已知得:an=1n+1(1+2+3+…+n)=n2,

bn=2n2•n+12=8(1n-1n+1) ∴数列{bn}的前n项和为

Sn=8[(1-12)+(12-13)+(13-14)+…+(1n-1n+1)]=8(1-1n+1)=8nn+1.

2.已知在各项不为零的数列 中,

(1)求数列 的通项;

(2)若数列 满足 ,数列 的前 项的和为 ,求

解:(1)依题意, ,故可将 整理得:所以 即,上式也成立,所以

二、知识梳理

(一)前n项和公式Sn的定义:Sn=a1+a2+…an。

(二)数列求和的方法(共8种)

5.错位相减法:适用于差比数列(如果 等差, 等比,那么 叫做差比数列)即把每一项都乘以 的公比 ,向后错一项,再对应同次项相减,转化为等比数列求和。

如:等比数列的前n项和就是用此法推导的.

6.累加(乘)法

7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.

形如an=(-1)nf(n)类型,可采用两项合并求。

8.其它方法:归纳、猜想、证明;周期数列的求和等等。

三、典型例题分析

题型1 错位相减法

例1 求数列 前n项的和.

解:由题可知{ }的通项是等差数列{2n}的通项与等比数列{ }的通项之积

设 ①

② (设制错位)

①-②得 (错位相减)

变式训练1 (2010•昌平模拟)设数列{an}满足a1+3a2+32a3+…+3n-1an=n3,n∈N*.

(1)求数列{an}的通项公式;

(2)设bn=nan,求数列{bn}的前n项和Sn.

解:(1)∵a1+3a2+32a3+…+3n-1an=n3, ①

∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=n-13. ②

①-②得3n-1an=13,an=13n.

在①中,令n=1,得a1=13,适合an=13n, ∴an=13n.

(2)∵bn=nan,∴bn=n3n.

∴Sn=3+2×32+3×33+…+n 3n, ③

∴3Sn=32+2×33+3×34+…+n 3n+1. ④

④-③得2Sn=n 3n+1-(3+32+33+…+3n),

即2Sn=n 3n+1-3(1-3n)1-3, ∴Sn=(2n-1)3n+14+34.

高三数学课文数列的前N项和教案,就是上面文章中为同学们带来的知识点了。只要你好好利用我们带来的知识,就可以轻松学习数学难点知识。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-102-8926 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956